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Abstract — Local fractional calculus deals with everywhere continuous but nowhere differentiable functions in fractal
space. The Yang-Fourier transform based on the local fractiona calculus is a generalization of Fourier transform in
fractal space. In this paper, local fractional continuous non-differentiable functions in fractal space are studied, and the
generalized model for the Yang-Fourier transforms derived from the local fractional calculus are introduced. A
generalized model for the Y ang-Fourier transformsin fractal space and some results are proposed in detail.
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1. Introduction

Local fractiona calculus has been revealed a useful
tool in areas ranging from fundamental science to
engineering in the past ten years [1-10]. It is important to
deal with the continuous functions (fractal functions),
which are irregular in the real world. Recently, some
model for engineering derived from local fractional
derivative was proposed [10]. The Yang-Fourier
transform based on the loca fractional caculus was
introduced [6] and Yang continued to study this subject
[10]. The importance of Yang-Fourier transform for
fractal functions derives from the fact that thisis the only
mathematic model which focuses on local fractional
continuous functions derived from loca fractional
calculus. The Yang-Fourier transform may be of great
importance for physical and technical applications, and
its mathematical beauty makes it an interesting study for
pure mathematicians as well [10-13]. Here, our attempt to
model generalized Y ang-Fourier transforms.

2. Preliminaries

2.1. Notations and recent results

Definition 1
If there exists the relation [10, 12-14]

|f (x)— f (x0)|<e“
with|X—XO| <0 forg,0 >0andg, 6 eR.

2.1)

Now f (X) iscalled local fractional continuous
a X=X, denotebyli_)nxl f (x)=f(%,).Then f (X)is

called local fractional continuous on the interval (a, b) ,
denoted by [10, 12, 13]

f(x)eC,(ab). (2.2)
Definition 2

A function f (X) is called a non-differentiable function
of exponentar ,0 < o <1, which satisfy Holder function
of exponent® , then for X, y € X such that [ 10, 12, 13]

f(x)-f(y)<Clx-y". (3

Definition 3
A function f (X) is called to be continuous of

order & | O<as< 1, or shortly & continuous, when we
have the following relation [10, 12, 13]

f(X)-f(%)=0((x-%)). @4
Remark 1. Compared with (2.4), (2.1) is standard

definition of local fractional continuity. Here (2.3) is
unified local fractional continuity.

Definition 4
Setting f (X) eC, (a, b), local fractional derivative of

f () of order o at X=X, is defined by [ 4, 5, 7-9, 10,
12-14]

£ (%)
_df(x) (2.5)
o o
_ |imAa ( f (X)_ f (XO))
e (x=x)
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where A’ (f(X)— f (%)) =T(1+a) A( f(X)—f(x,)).
For any X € (a, b) , there exists [10, 12, 13]

(2.6)
denoted by

f(x)e D, (a,b). 2.7)
Definition 5
Setting f (X) eC, (a, b), local fractional integral
of f(X) of order o intheinterval [@,b]is defined [4, 6,
10, 12-14]

alb(“ f(x)
S AL o
1 j=N-1

where At =t, | —t;, At =mex{At, At,, Aty ..} ad [t ¢, ]

j+1 j
j=0,..,.N-1,t,=a,t, =b,
interval [a, b].

Here, it follows that

is a partition of the

L9 (x)=0ita=b 2.9)
and
JE(X) ==, 17 F (x) ifa<b  (210)
For any X € (a, b) , there exists
Lf (%), (2.12)
denoted by
f(x)e | (a,b). (2.12)

Remark 2. If f (X) e DX(”‘)(z’:l,b),orX0 Ix(“)(a,b),
we have

f(x)eC,(ab). (2.13)
2.2. Recent results
Suppose that f (X), g(X) eD, (a, b),thefollowing

differentiation rules are valid [5,14]:
d*(f(x)£g(x) _d“f(x) Ld"g(x).

dx” o e

(000 07109 o0

(2.15)

(%) “f(x “g(x

[ g0) gt s ol
dx” B g(x)2
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ifg(x)=#0;
a*(CF(9) _ a1 (x)
dx*  dx*
if C isaconstant.

It y(x) =(f ou)(x) whereu(x)=g(x), then
d*y(x) —§@ (g( x))(g(l)(x))a. (2.18)

(2.17)

Theorem 1[7,14]
Suppose that f (x),g(x) e C, [a,b], then

aIb("‘)[f (x)ig(x)]: A (x)ialb(”‘)g(x).
(2.19)

Theorem 2 [7,14]
If f (X) = g(“) (X) eC [a,b] , then we have
| f

Ay (2.20)

Theorem 3[7,14]
If g(x)eC,[a,b] and (fog)(s)eC,[g(a),0(a)].
Then we have
ool T ) =1, (Fog)(s)[ g (s)]
(2.21)

Theorem 4[7, 14]
Suppose

that f (x),9(x) €D, (a,b)and ' (x),d* (X C, [ab]
. Then we have
S (080 =[FO9O] -l (D) g (1),

(2.22)

2.3. The Yang-Fourier transforms in fractal
space

Definition 6
Suppose that f (X) eC, (—oo,oo) , the Yang-Fourier
transform, dented by F, { f (x)} = («), is written in
theform[10, 12, 13]
F{f (%)
=f,"(o)
1 00 a0 a a
“ied) [ E (e f(x)(K)
where the latter converges.
And of course, a sufficient condition for convergenceis

(2.23)
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1
I'(1+a)
1
I'(1+a)
Definition 7
IfF, { f (X)} =f,“(w), itsinversion formulais written
intheform[10, 12, 13]
f(¥
:F(;l( wa'”‘(a))):
1 00 - a
= E,X(I“a)”‘)(”) f,*(w)(dw)",x>0.

[ f(0E, (4 0™ )(d)
(2.24)

<

j:|f(x)|(dx)“ <K <o,

(2.25)

3. Motivation of the generalized Yang-
Fourier transformsin fractal space

If f (X) is 2l -periodic and local fractional continuous
on[y,i], we have

f(x)= ki_w C,E, [”'i&} (3.1)

where its coefficientsis

[ F(E, (%}(d)

MCt.Wehave

@y o

Ll & e [ A ()
f(x)= ay k;cn E, [l—J (33)

where its coefficientsis

LetussetC, =

(3.4)
If we define
k. = (”l—nj , (35)
then we have
(k) =6k =[] 09

It is convenient to rewrite

82
f(x)
:éz%&(ia"“kﬁ(%)a 37)
- (Zi)a [ GE, (i¢k)(dk,)"
as| = oo and
C. :ﬁjf@ f(X)E, (i“x"k,")(dx)". (3.8)
Casel.

Taking K.” = ®” in (3.9) and (3.8), this leads to the
following results

f(x)= (271)“ IjOCkEa (i“x“0*)(do)* (39
and
Cc= F(lia)j: f(X)E, (i"x“")(dx)" . (3.10)

Remark 3. The above are called the Y ang-Fourier
transform [10, 12, 13].
Case 2.

Takingw” =(27)" @ in(3.9) and (3.8) implies that

f(x)= '[joCkEa (i"’xaw'“)(da)')a (3.11)

and

1 * ra o o a
Ck:F(1+a)wa(X)E“(I X“@ )(dx)
(3.12)
Case3.

. (2
Takingw™ = o it followsfrom (3.9) and
I'(1+a)

(3.8) that

f (x):ﬁJ‘ZCkEH {i“x‘” .

and

C= w*“j(dx)“-

(3.14)

1 o (21)
Mgl 5 {_' X T(ra)

Definition 8 (Generalized Yang-Fourier transform)
From (3.14) we get a generalized Y ang-Fourier transform
in the form

E{1(3)
~%(o)
1

IR O

(3.15)
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(27)"

I'(1+a)

A sufficient condition for convergenceis

whereh, = withO<a <1.

l © [04
mj‘_w‘f(x)‘(dx) <K <o0. (3.16)

Definition 9
From (3.13) we get the inverse formula of the generalized
Y ang-Fourier transformin the form

Fa—l( wa,a (CO))
(3.17)

- j“; t7(0)E, (i*hx“o" )(do)”

2r)”

(21) i o<a<t
I'(1+a)

A sufficient condition for convergenceis

ﬁj‘i‘ f o (a))‘(da))a <M <o, (318)

whereh, =

4. Someresults

The following formulas are valid:
F, {af (x)+bg(x)} =aF, { f (x)}+bF, {g(x)},
a,beC

F,{f(x—c)}=E, (i“cx*)F, { f (x)},
ceC

(4.1)

(42)
F {f(ax)}=a“f “(w/a),a>0 (43

(04

F, {af (o) +bg)“ (o)}
=aF, {15 (o)} +bF gl (o)},

a,beC

(4.4
F {5 (w+c)}=f(X)E, (-“c'x*),c€C
(4.5)
Fa{f(“)(x)}z—i“mco“Fa{f(x)}. 4.6)
The above are proved in Appendix A.

Theorem 5 (Uniqueness of the generalized Yang-
Fourier transforms)

LetF, {f,(x)| = £ (o) andF, {f,(x)} =15 (o).
Suppose that f,* (w) = f, 5" (@), then

83

f.(x)=f,(x).
Proof. Using the motivation of the generalized Y ang-
Fourier transforms yields the result.

4.7

Definition 10

The convolution of two functions, which satisfy the

condition (3.16) and (3.18), isdefined symbolically by
1

O e MAGLACRU G

(4.8)
As further results, the properties of the convolution
of the non-differentiable functions for convenience read
as.
The commutative rule:

fL(x)* f,(x)=f,(x)* f,(x);

The distributive rule:

B0 #( F2 (%) + Fa(%)) = £(3)#( £, (x) + Fo(x)).

(4.10)

(4.9)

Theorem 6
Suppose

that F, { fl(x)} =" (w)andF, { fz(x)} =f, ().
Then

F () f,(x)} = £ (o) £ (0). (411)
Proof. Taking into account the definitions of the

convolution of two functions and the generalized Yang-
Fourier transform implies that

F{ (0 ()]
1 0 1o o % a
_r(1+a)LoEa(' ) (£,(3) (X)) ()"
Successively, rearranging equation (4.11) becomes

r(lia)fi(r(lia) fiEaH“mx“wa)fz(x—t)(ou)“]

f(t)(c)’
1

T(1+a) J: E,(Hht"a ) £,(0) 15" (o) ()"

(4.12)
Take into account the relation

fuz' ()

B ottt

(4.13)
which follows from (3.12) that
foi* (@) f,5" (@)
1 * ra a_.a o a
ZWL E, (<i"ht“o® ) f,(t) 175 () (dt)".
(4.14)

Hence we arrive at the result.
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Asadirect result, we have the following result.
Theorem 7

Let F, {f(x)} =" (o), then

I8 (f

1 o
f(x
[(1+a) L"| (
(4.15)
Proof. Using the definition of convolution and inverse

formula of generalized Yang-Fourier transform implies
that

()

=r<1ia)fia(i“mw“x“)f;'fl(w)(dw)“' -
Furthermore

hoa) X“ fF“( )(dw)”
:ﬁj (iR x? ) 15 (o) (do)".

(4.17)
From (4.17) , (4.16) becomes

(%)
=ﬁj (<o x) 17 (o) (do)",

(4.18)
Now we have

IR I RO

. (4.19)

Using (4.18) implies that

1

SRR Z A CER

(4.20)
Success ver rearranging (4.20) yields

J’m Fa .I:Fa )(da))a

gl o

Hence, the proof of theorem is completed.

(4.22)

5. Conclusions

In present paper we give a generalized Y ang-Fourier
transforms as follows:

=ﬂwith0<a <1
I'(1+a)

The transforming functions are local fractional
continuous. That isto say, it isfractal function defined on
fractal sets. Fourier transforms in integer space are the
special case of fractal dimensionar =1. It is a tool to
deal with differential equation with local fractional
derivative.

where h,

Appendix A.

Taking into account equation (2.19), we directly obtain
formulas (4.1) and (4.4).
Now we start with equation (4.2).

F{(x-0)
1

:r(1+a)J:f(x c)E (IhOX )( X)”
L (Hi“he o) f(x—c)
o")(d(x-c))"

(using (2.21))

1
h F(l+a)J-
E, (—i"ho(x—c)“
S e (e o0
€ (e )F, {1 ()

Now we start with equation (4.3).

AUCH)

eI R (N T}
(u:r ng (2.21))
] t@E | a2 ety

:ifF'a(ﬂj
a* ° \la)

Now we start with equation (4.3).
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F, { f o (a)+C)}

zﬁj"; 17 (0+0) E, (i*hxot ) (do)’

_E, (") [
~ I(l+a)
(d(a)+c))a

£ (@+C)E, i’ (@+0)")

—00

(using (2.21))
=E, (—i“hyx“c”) f (x).

Now we start with equation (4.3).

F AT ()]

:ﬁjz £ (X)E, (-i"hyx " ) ()"

(using (2.20) and (2.2))

o0
—00

= 19 (x)E, (-i"hyx“a)

gl T, (mcar ) (0

=-i“hyw”F, { f (x)}.
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